Altered donor and recipient Ly49+ NK cell subsets in allogeneic H-2d --> H-2b and H-2b --> H-2d bone marrow chimeras.

نویسندگان

  • S Korten
  • E Wilk
  • J E Gessner
  • D Meyer
  • R E Schmidt
چکیده

NK cells reject non-self hematopoietic bone marrow (BM) grafts via Ly49 receptor-mediated MHC class I-specific recognition and calibration of receptor expression levels. In this paper we investigated how Ly49+ subset frequencies were regulated dependent on MHC class I expression. The development of donor and host Ly49A+ (recognizes H-2Dd and H-2Dk ligands) and Ly49C/I+ (Ly49CBALB/c recognizes H-2Kb, H-2Kd, and H-2Dd, and Ly49CB6 recognizes only H-2Kb) NK cell frequencies were monitored for 120 days in murine-mixed allogeneic BM chimeras. C57BL/6 (H-2b) BM was transplanted into BALB/c (H-2d) mice and vice versa. Peripheral NK cell populations were examined every 5 days. Chimerism was found to be stable with 80-90% donor NK cells. In contrast to syngeneic controls reexpressing pretransplant patterns, donor and host NK cells revealed new and mainly reduced subset frequencies 55 days after allogeneic transplantation. Recipient NK cells acquired these later than donor NK cells. In H-2d --> H-2b chimeras Ly49A+, Ly49C/I+, and Ly49A+/Ly49C/I+ proportions were mainly diminished upon interaction with cognate ligands. Also in H-2b --> H-2d chimeras, Ly49A+ and Ly49A+/Ly49C/I+ subsets were reduced, but there was a transient normalization of Ly49C/I+ proportions in the noncognate host. After 120 days all subsets were reduced. Therefore, down-regulation of developing Ly49A+ and Ly49C/I+ chimeric NK cell frequencies by cognate ligands within 7-8 wk after BM transplantation may be important for successful engraftment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hematopoietic cells and radioresistant host elements influence natural killer cell differentiation

Radioresistant host elements mediate positive selection of developing thymocytes, whereas bone marrow-derived cells induce clonal deletion of T cells with receptors that are strongly autoreactive. In contrast to T cell development, little is known about the elements governing the natural killer (NK) cell repertoire, which, similar to the T cell repertoire, differs between individuals bearing di...

متن کامل

Differential effects of the rejection of bone marrow allografts by the depletion of activating versus inhibiting Ly-49 natural killer cell subsets.

Natural killer cells mediate the specific rejection of bone marrow cell (BMC) allografts in lethally irradiated mice. The Ly-49 family of molecules present on subsets of murine NK cells appears capable of binding class I MHC molecules, resulting in transmission of an inhibitory signal to the NK cell. These Ly-49 family members have been shown to have an immunoreceptor tyrosine-based inhibitory ...

متن کامل

Self H-2 antigens influence the specificity of alloreactive cells

We have tested Jerne's hypothesis (9) that the phenomenon alloreactivity is explained by the existence of T cells that express germline-encoded receptors specific for major histocompatibility complex antigens and that these cells undergo no change in specificity during thymic differentiation. T cells from [F1 leads to Parent] bone marrow radiation chimeras reactive to conventional antigens are ...

متن کامل

Restricted antibody formation to sheep erythrocytes of allogeneic bone marrow chimeras histoincompatible at the K end of the H-2 complex

Employing a new method for allogeneic bone marrow transplantation, irradiation chimeras constructed from various combinations of marrow cells from B10 H-2 recombinant mice and AKR recipients were prepared. Though these chimeras had well-developed populations of T and B cells, they showed strikingly different patterns of responses in the primary antibody formation to sheep erythrocytes (SRBC), a...

متن کامل

Involvement of the K and I regions of the H-2 complex in resistance to hemopoietic allografts

Irradiated (H-2b X H-2k)F1 and (H-2b X H-2d)F1 recipients strongly resist the growth of H-2b parental bone marrow cells and do not resist marrow grafts from non-H-2b parents such as C3H and BALB/c. This phenomenon of hybrid resistance has been shown to be under genetic control of the H-2D-linked loci and was interpreted by Cudkowicz (9) as due to the existence of H-2D-linked recessive hemopoiet...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of immunology

دوره 163 11  شماره 

صفحات  -

تاریخ انتشار 1999